Monitoring the SDGs: how and why

Brennan VanDyke
Chief of the Capacity and Innovation Branch
Science Division
UN Environment
The challenge

How can we provide food, water, energy for 9.4 billion people, avoid dangerous climate change, and protect our planet’s biodiversity?
MDGs to SDGs

MDGs
Resulted to increased capacity of countries to use statistics on social development - poverty, education, health, gender, environment and governance

SDGs
Focused on environmental statistical disaggregation by location, age, gender, age, poverty and other factors

1947
Establishment of the United Nations Statistical Commission (UNSC)

1983
Brundtland Commission leading to the Framework for the Development of Environment Statistics

2012
UNSC started working on environmental economic accounting during the Earth Summit

2013
Adoption of the Experimental Ecosystem Accounts (SEEA) as a statistical standard

Adoption of System of Environmental Economic Accounts (SEEA) as a statistical standard
Knowledge Products: measuring the SDGs

Measuring Progress
Towards achieving the environmental dimension of the SDGs
Environment-related indicators in the SDGs: what we need to know

**Gender**
- Environmental relationships, including drivers and impacts, are based on the social construction of gender roles - men and women.
- UNEP produced the Global Gender and Environmental Outlook (GGOE), but there is less information on gender-disaggregated environmental assessment.
- Knowledge base should be able to reflect the human-environment interactions – Who pays, Who is serve, and Whose knowledge counts?
- Significantly less investment on environment- and resource-related social science and equity-related research.
- Disaggregated data are vital to address issues of equity, as well as information on the politics of data and knowledge.
- Researchers mostly come from ‘developed countries’, with 87% from the G20 countries (UNESCO 2015). More should be obtained from developing countries.

**Economy**
- SDGs and environmental economics accounting provide insight into the value of ‘nature’s contributions to people’ and cost of residuals, helping policy makers plan and decide on resource allocation.
- Need for a diverse methodology involving insights from ecology, economics, social and cultural studies, and recognizing their dynamic evolution.

**Environment** and its social nexus and intersectionality

**Equity**
- Social environment has a strong influence on health and well-being.
- Health-environment nexus entails the measurement of ‘exposure’ to environmental factors and the ‘outcome’ of health and/or well-being.
Data underpins good decisions

- 68% of environment-related SDG indicators do not have enough data to assess global progress.
- There is even less data availability that is disaggregated by vulnerable population or geospatially.
Where do we want to go?

**Healthy People, Healthy Planet**

- **Future Data Needs**
  - **Big data** is one of the world's emerging valuable resources **changing environmental assessment processes**.
  - More **inclusive and open access** to data will assist in achieving equity, transparency and best use of data for sustainability and development.
  - **Citizen Science** is engaging the public in collecting and analysing big amounts of environmental data.
  - As **women** and **men** have different rights over the environment, measuring the **gender-environment nexus** is a high priority.
  - Innovative methods of data collection are required to transform the provisioning of environmental data and statistics.

**Current State of Data and Knowledge**

- **Traditional knowledge** can complement science-based knowledge.
- **More environmental data** are needed, focused mostly on the interlinkages between **environmental society and economy**.
Course correction

Example of policy tracking

- Current trajectory
- Expected policy impact
- Actual
Biodiversity Loss

Between 1970 and 2010, the planet has lost 52% of its biodiversity. Currently, 1 million species face extinction.
“The global environmental governance framework is simply not keeping pace with the rate of change that is driving environmental degradation, biodiversity loss and climate change”

– Dr. Jian Liu, UN Environment Chief Scientist

We need better data and science in order to better manage natural resources, target investments and technologies and develop policy.
Moving forward

- We need better, faster data so that we can identify problems as they happen.
- We need data to be used
  - Capacity development on data and data use
  - Systems for sharing and finding data
- We need to find ways to not only create information but action
  - Integrated analysis
  - Citizen engagement
Monitoring the SDGs: how and why

Brennan VanDyke
Chief of the Capacity and Innovation Branch
Science Division
UN Environment