Status of waste to energy projects in India

Suneel Pandey, Director Environment and Waste Management Division October 25th 2022 spandey@teri.res.in

Municipal Solid Waste Generation Trends in India

GHG Emissions for Waste Sector in India

100,000

GHG emissions projection BAU

GHG Emissions projection – current scenario)

TERI estimates based on IPCC; Reduction largely due to recent Government Initiatives

GHG: Greenhouse Gas Emissions

SECURITY

Guiding Legislation - SW Rules, 2016

- Mandates local body and institutions for primary collection, storage, transportation, processing and disposal
- Emphasizes on need for segregation at source
- Bans organic waste to be disposed in landfills
- Promotes recycling and organic waste processing
- Prescribes use of combustible waste RDF (CV at 1500 Kcal/kg or more) as raw material or as a source of energy in industrial processes or co-processing

HABITAT

MSW characteristics in Indian cities

Parameter	Unit	Range 30 - 55 5 - 15 40 - 55 14 - 53 17 - 65 800 - 1200	
Compostable	%		
Recyclable (Plastics, Paper, Metal, Glass etc)	%		
Inter including construction & demolition waste	%		
Carbon/Nitrogen (C/N)	Ratio		
Moisture	%		
Calorific Value	kcal/kg		
THE ENERGY AND RESOURCES INSTITUTE ENERGY AGRICULTURE ENVI	IRONMENT HABITAT	RESOURCE CLIMATE	

Challenges for using MSW as feed in waste to energy

- Variability in composition
- High moisture content, can also cause fouling of equipment if inert is high
- Use of un segregated waste can also lead to emission of toxic heavy metals
- Low calorific value suitable more for biochemical conversion than thermal conversion

Waste Solutions for Circular Economy in India

- Setting up of Material Recovery Facility and processing the sorted waste through
 - Aerobic Composting
 - Recycling
 - Biomethanation
 - RDF for co-processing in cement kilns

HABITAT

CLIMATI

Cumulative capacity on waste to energy project in India

SI. No.	Output product	Cumulative capacity
1	Biogas	7,43,508 m3 per day
2	Bio-CNG/CBG	97,199 kg per day
3	Power (Grid & Offgrid)	291.34 MW

MNRE Annual Report 2020-21

SECURITY

Sustainable Alternative towards Affordable Transportation (SATAT)

Creating Innovative Solutions For A Sustainable Future

HEALTH

SECURITY

SATAT

- Changes the viability of setting up waste based biogas plants in India
- Setting up of CBG plants with support of oil companies in India
- As of now 37 plants have been commissioned
- Around 9000 tonnes of CBG sold

RDF Pre-processing

ENVIRONMENT

ENERGY

AGRICULTURE

HABITAT RESOURCE SECURITY

CE CLIMA

Advantages of Co-processing in Cement Kilns

- High flame temperature (1400-1500°C) ensures complete destruction of harmful pollutants
- High residence time >5 sec in oxygen rich atmosphere ensures complete destruction of organic compounds including dioxins and Furan
- Total neutralization of acid gases, sulphur oxides and hydrogen chloride- by the active lime in the kiln load.
- The biggest advantage is that co-processing leaves no residue to be land-filled.

Drivers for RDF Uptake

ENVIRONMENT

HABITAT

For Cement Plants

- Low carbon Growth Non Fossil fuel based fuel use
- Community service in terms of waste management
- 25% TSR feasible as against
 2% presently

ENERGY

For ULBs

- The mechanism helps in managing the waste in an environmentally sound method.
- Large quantities of segregated waste could utilized by cement kilns

CLIMATE

Challenges in RDF Uptake

- Uncertainty in supply and quality of RDF
- Limited RDF processors located near the cement plants therefore large transportation distance
- Many earlier established plants are now non functional

The requirement therefore is:

- More RDF processors required in Tier I and Tier II cities
- Inclusion of co-processing as an option in municipal bye-laws
- Financial support for RDF processing and transportation costs
- Landfill tax to promote resource recovery

Issues Related to Quality of RDF

- The key concerns regarding quality of processed RDF is with respect of
 - Inconsistent calorific value mostly of lower side than desired due to high inert
 - High moisture content
 - High chlorine content
- This can be addressed by regular testing of incoming waste and outgoing processed RDF for
 - Moisture content
 - Ash content
 - Chlorine and Sulphur content
 - Net Calorific Value
 - Heavy metal analysis, reactive sulphide, reactive cyanide and reactive halide, if desired

THE ENERGY AND RESOURCES INSTITUTE Creating Innovative Solutions For A Sustainable Future

Desired Quality of RDF

Parameters	SCF	RDF- Grade III	RDF- Grade II	RDF- Grade I
Intended use	W2E plants or RDF pre- processing facility	Direct co- processing with other wastes	Direct co- processing	Direct co- processing
Size	Above 400 mm	< 50 mm or < 20 mm depending on use in ILC of SLC		
Ash骨	< 20%	< 15%	< 10%	< 10%
Moisture	< 35%	< 20%	< 15%	< 10%
Chlorine	< 1.0%	< 1.0%	< 0.7%	< 0.5%
Sulphur🕆	< 1.5%			
NCV (Kcal/Kg)	> 1500	> 3000	> 3750	> 4500
Odour	Any offensive odour needs to be controlled			

ENVIRONMENT

HABITAT

RESOURCE

SECURITY

¹ - maximum permissible
 Guidelines for usage of RDF in various industries, MoHUA, 2018

AGRICULTURE

RDF: Refuse Derived Fuel

NUTRITION

Typical Saving Using MSW based RDF

MSW Substitution	Quantity of MSW (Tons/Year)	Energy from MSW (Million Kcals/ Year)	Coal Savings (Tons of coal/ Year)	Carbon reduction potential Tons CO ₂ /Year
2%	9,51,489	19,02,978	3,80,596	7,64,862

- In fact, experience in Europe shows that 50-60% TSR is achievable with right kind of RDF
- Some of the German cement plant have operated at 100% TSR

RDF: Refuse Derived Fuel, TSR: Thermal Substitution Rate

Thank you

