

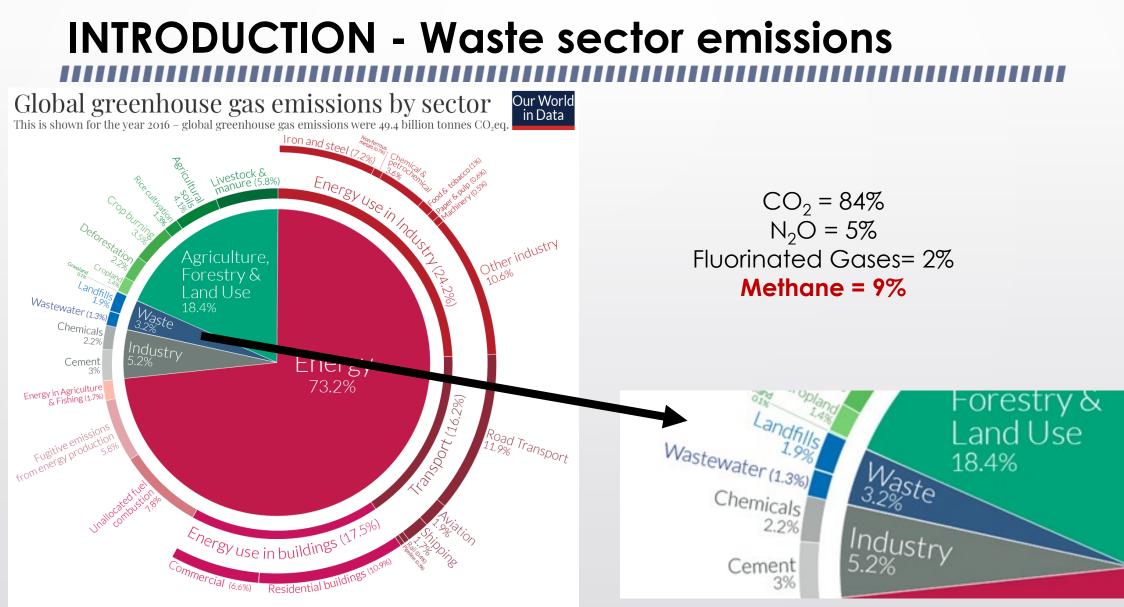
The 5th GREENHOUSE GAS INVENTORY SYSTEM TRAINING WORKSHOP

Main Contents of 2006 IPCC Guideline Vol.5 (Waste)

Bojan Batinić PhD – Associate Professor

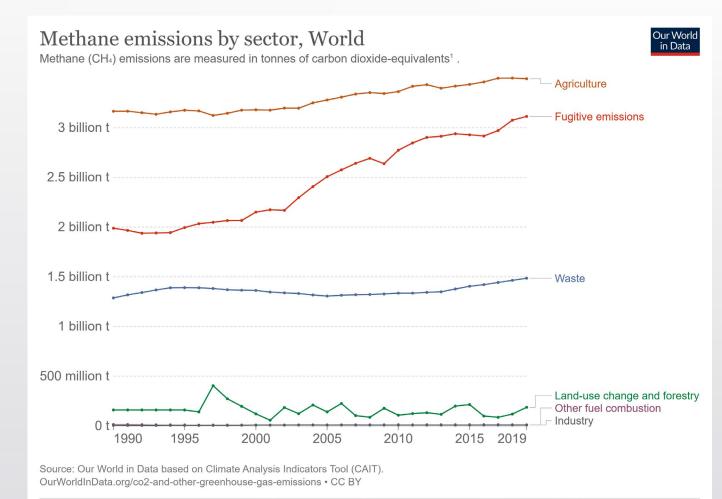
University of Novi Sad, Faculty of Technical Sciences - Department of environmental engineering

Center of Excellence for Circular Economy and Climate Change


14th February 2023, Bangkok, Thailand

PRESENTATION OBJECTIVE

"To reduce GHG emissions by establishing a transparent and reliable GHG inventory system to monitor and verify the current state of emissions. The GHG inventory system provides a basic approach in organizing monitoring, reporting, and verifying (MRV) procedures in each country."


- 1) Provide overview of the rationale behind Vol 5
- 2) offer insights into how methodology translates into practical waste management on the ground
- 3) support understanding of concept through case study work

OurWorldinData.org – Research and data to make progress against the world's largest problems. Source: Climate Watch, the World Resources Institute (2020). Licensed under CC-BY by the author Hannah Ritchie (2020).

INTRODUCTION - Waste sector emissions

Waste is **third largest** contributor to **methane** (CH_4) **emissions**, after agriculture and 'Fugitive emissions'.

Methane is **produced in landfills** when organic materials decompose.

INTRODUCTION - Waste sector emissions

Greenhouse gas emissions of waste management, EU-28, 1990-2017 (million tonnes of CO₂ equivalent) Solid waste disposal Wastewater treatment and discharge Incineration and open burning of waste eurostat O

Landfills around the world contribute to an estimated eleven percent (11%) of all global methane emissions, with methane being a climate amplifier and up to 25 times stronger than CO_2 (carbon dioxide) as a greenhouse gas on a longer term.

Source: EEA, republished by Eurostat (online data code: env_air_gge)

2006 IPCC Guidelines for National Greenhouse Gas Inventories (Waste)

Contents

Waste Generation, Composition and Management Data

Solid Waste Disposal

Biological Treatment of Solid Waste

Incineration and Open Burning of Waste

Wastewater Treatment and Discharge

* IPPC Waste Model

Waste Sector Overview

Volume 5 (Waste) provides methodological guidance for estimation of CO₂, CH₄ and N₂O emissions from following categories:

	4A1 Managed Waste Disposal Sites
	4A Solid Waste Disposal / 4A2 Unmanaged Waste Disposal Sites
	4A3 Uncategorised Waste Disposal Sites
	4B Biological Treatment of Solid Waste
WASTE	4C Incineration and Open Burning of Waste
1	4C2 Open Burning of Waste
	4D1 Domestic Wastewater Treatment 4D Wastewater and Discharge
	Treatment and Discharge 4D2 Industrial Wastewater Treatment and Discharge
	4E Other

Estimates emissions of:

- Carbon dioxide (CO_2)
- Methane (CH_4)
- Nitrous Oxide (N_2O)

Global warming potential:

- $CO_2 = 1$ (reference)
- $CH_4 = 25$
- $N_2O = 298$

CH4 emissions from solid waste disposal sites (SWDS) are typically the largest source in the Waste sector.

Incineration and open burning of waste containing fossil carbon, e.g., plastics, are the most important sources of CO₄ emissions in the Waste Sector.

Waste generation, composition and management data

The starting point for the estimation of GHG emissions from solid waste management is relevant data on waste generation & composition.

Solid waste generation rates and composition vary from country to country (due to different influencing factors)

Also, availability and quality of data can vary significantly

Data are separately required for:

- Municipal solid waste (MSW)
- Sludge
- Industrial waste
- Other waste

Municipal Solid Waste - Analysis

Determining **the total amount** of municipal waste in the municipality

Defining **morphological composition** of municipal waste

It is good practice that countries use data on country-specific MSW generation & composition:

- Statistics, surveys, research projects...
- Direct measurements/analysis

by measuring the amount of collected/generated MSW on weighbridges

by sorting and measuring 23 fractions of waste according to the waste sorting catalog

Municipal Solid Waste - Generation

- Household waste
- Garden (yard) and park waste
- Commercial/institutional waste

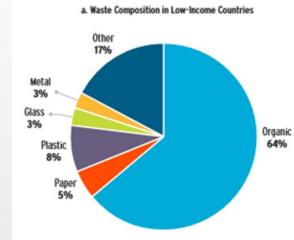
Estimated based on country-specific data from a limited number of countries (Annex 2A.1).

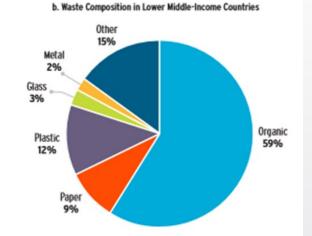
Assumed to be applicable for the year 2000.

Table 2.1 MSW generation and treatment data - regional defaults										
RegionMSW Generation Rate1,2,3Fraction of MSW disposedFraction of MSWFraction of MSWFraction of MSWFraction of other MSW(tonnes/cap/yr)to SWDSincineratedcompostedunspecified4										
Asia										
Eastern Asia	0.37	0.55	0.26	0.01	0.18					
South-Central Asia	0.21	0.74	_	0.05	0.21					
South-East Asia	0.27	0.59	0.09	0.05	0.27					

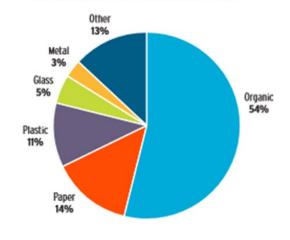
Municipal Solid Waste - Composition

Waste composition is one of the main factors influencing emissions from solid waste treatment, as different waste types contain different amount of degradable organic carbon (DOC) and fossil carbon.

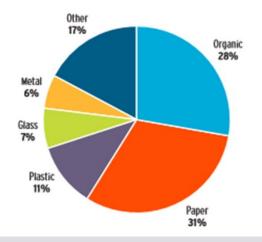

Default data provided for :

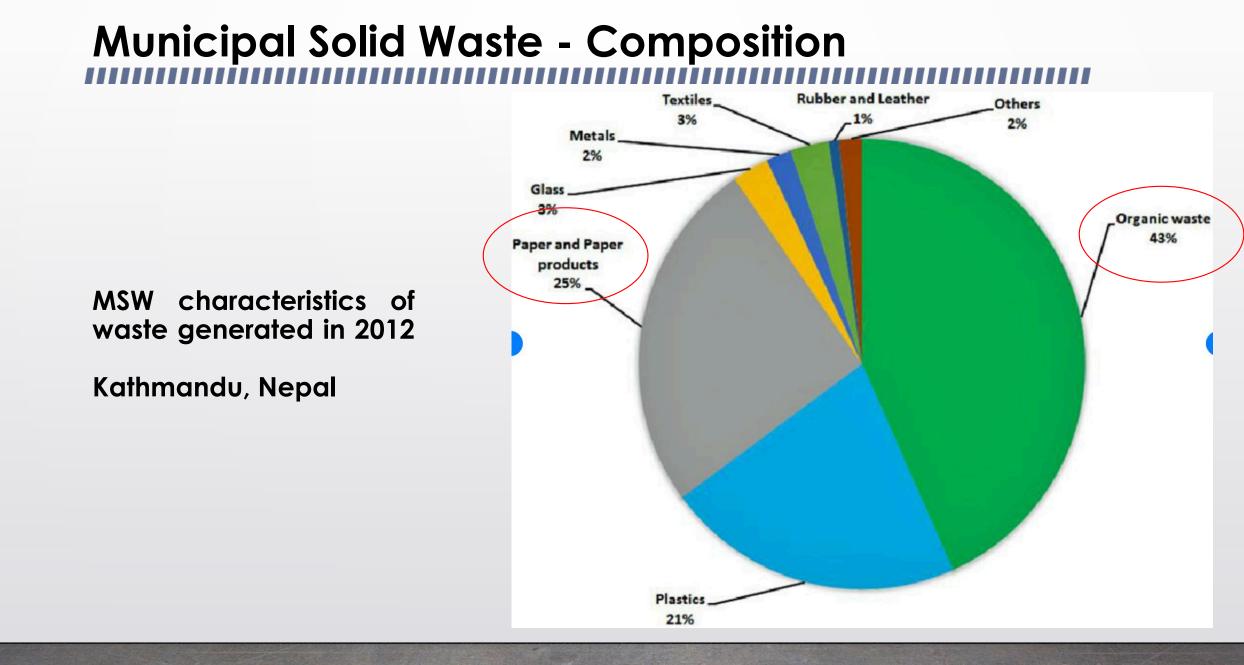

1. food waste

- 2. garden (yard) and park waste
- 3. paper and cardboard
- 4. wood
- 5. textiles
- 6. nappies (disposable diapers)
- 7. rubber and leather
- 8. plastics
- 9. metal
- 10. glass (and pottery and china)
- 11. other (e.g., ash, dirt, dust, soil, electronic waste)


contain most of the DOC in MSW

Municipal Solid Waste - Composition





c. Waste Composition in Upper Middle-Income Countries

d. Waste Composition in High-Income Countries

Municipal Solid Waste - Composition

TABLE 2.3 MSW composition data by percent -regional defaults										
Region	Food waste	Paper/cardboard	Wood	Textiles	Rubber/leather	Plastic	Metal	Glass	Other	
Asia										
Eastern Asia	26.2	18.8	3.5	3.5	1.0	14.3	2.7	3.1	7.4	
South-Central Asia	40.3	11.3	7.9	2.5	0.8	6.4	3.8	3.5	21.9	
South-Eastern Asia	43.5	12.9	9.9	2.7	0.9	7.2	3.3	4.0	16.3	
Western Asia & Middle East	41.1	18.0	9.8	2.9	0.6	6.3	1.3	2.2	5.4	
Africa										
Eastern Africa	53.9	7.7	7.0	1.7	1.1	5.5	1.8	2.3	11.6	
Middle Africa	43.4	16.8	6.5	2.5		4.5	3.5	2.0	1.5	
Northern Africa	51.1	16.5	2	2.5		4.5	3.5	2	1.5	
Southern Africa	23	25	15							
Western Africa	40.4	9.8	4.4	1.0		3.0	1.0			
Europe										
Eastern Europe	30.1	21.8	7.5	4.7	1.4	6.2	3.6	10.0	14.6	
Northern Europe	23.8	30.6	10.0	2.0		13.0	7.0	8.0		
Southern Europe	36.9	17.0	10.6							
Western Europe	24.2	27.5	11.0							
Oceania										
Australia and New Zealand	36.0	30.0	24.0							
Rest of Oceania	67.5	6.0	2.5							
America										
North America	33.9	23.2	6.2	3.9	1.4	8.5	4.6	6.5	9.8	
Central America	43.8	13.7	13.5	2.6	1.8	6.7	2.6	3.7	12.3	
South America	44.9	17.1	4.7	2.6	0.7	10.8	2.9	3.3	13.0	
Caribbean	46.9	17.0	2.4	5.1	1.9	9.9	5.0	5.7	3.5	

Sludge

Sludge from domestic and industrial wastewater treatment plants is addressed as a separate waste category in this Volume.

In some countries, sludge from domestic wastewater treatment is included in MSW and sludge from industrial wastewater treatment in industrial waste. Countries may also include all sludge in industrial waste.

Industrial waste

Industrial waste generation and composition vary depending on the type of industry and processes/technologies in the concerned country. In many countries industrial solid waste is managed as a specific stream and the waste amounts are not covered by general waste statistics. However, in some developing countries industrial wastes are included in the municipal solid waste stream, therefore, it is difficult to obtain data of the industrial waste separately.

Industrial solid waste disposal data may be obtained by **surveys or from national statistics**. Only those industrial wastes which are **expected to contain DOC and fossil carbon should** be considered for the purpose of **emission estimation** from waste.

Other waste

Clinical/medical waste: These wastes include materials like plastic syringes, animal tissues, bandages, cloths, etc. In most countries, the amount of greenhouse gas emissions due to clinical waste appears to be insignificant.

Hazardous waste: Waste oil, waste solvents, ash, cinder and other wastes with hazardous nature, such as flammability, explosiveness, causticity, and toxicity, are included in hazardous waste. Hazardous wastes are generally collected, treated and disposed separately from non-hazardous MSW and industrial waste streams. Some hazardous wastes are incinerated and can contribute to the emissions from incineration

Agricultural waste: Manure management and burning of agricultural residues are considered in the AFOLU Volume. Agricultural waste which will be treated and/or disposed with other solid waste may however be included in MSW or industrial waste.

Degradable organic carbon (DOC) - MSW

DEFAULT DRY	TABLE 2.4 DEFAULT DRY MATTER CONTENT, DOC CONTENT, TOTAL CARBON CONTENT AND FOSSIL CARBON FRACTION OF DIFFERENT MSW COMPONENTS											
MSW component	Dry matter content in % of wet weight ¹		content wet waste	DOC content in % of dry waste		соп	carbon tent ry weight	Fossil carbon fraction in % of total carbon				
	Default	Default	Range	Default	Range ²	Default	Range	Default	Range			
Paper/cardboard	90	40	36 - 45	44	40 - 50	46	42 - 50	1	0 - 5			
Textiles 3	80	24	20 - 40	30	25 - 50	50	25 - 50	20	0 - 50			
Food waste	40	15	8 - 20	38	20 - 50	38	20 - 50	-	-			
Wood	85 ⁴	43	39 - 46	50	46 - 54	50	46 - 54	-	-			
Garden and Park waste	40	20	18 - 22	49	45 - 55	49	45 - 55	0	0			
Nappies	40	24	18 - 32	60	44 - 80	70	54 - 90	10	10			
Rubber and Leather	84	(39) 5	(39) 5	(47) 5	(47) 5	67	67	20	20			
Plastics	100	-	-	-	-	75	67 - 85	100	95 - 100			
Metal ⁶	100	-	-	-	-	NA	NA	NA	NA			
Glass ⁶	100	-	-	-	-	NA	NA	NA	NA			
Other, inert waste	90	-	-	-	-	3	0 - 5	100	50 - 100			

DOC - Sludge

The DOC content in sludge vary depending on the **wastewater treatment method** producing the sludge, and also be **different for domestic and industrial sludge**.

If country and/or industry-specific DOC values are not available:

- For domestic sludge used default DOC value is 5 % (of wet waste) or 40-50
 % of dry matter
- Industrial sludge 9 % (wet waste) or 35 % of dry matter

DOC – Industrial waste

DOC and fossil carbon in industrial waste is mainly found in the same waste types as in MSW. DOC is found in paper and cardboard, textiles, food and wood. Synthetic leather, rubber, and plastics are major sources of fossil carbon.

Table 2.5 provides default values of DOC and fossil carbon contents in industrial waste by industry type per amount waste produced. The default values are only for process waste generated at the facilities.

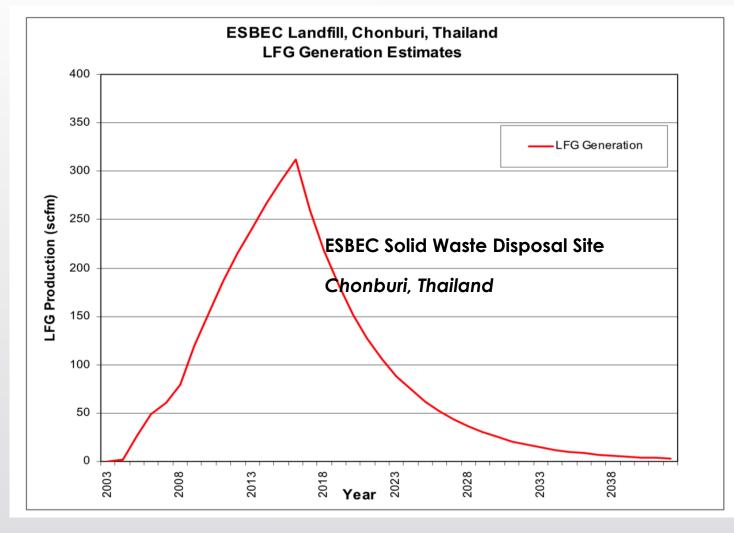
TABLE 2.5 DEFAULT DOC AND FOSSIL CARBON CONTENT IN INDUSTRIAL WASTE (PERCENTAGE IN WET WASTE PRODUCED) ¹									
Industry type	DOC	Fossil carbon	Total carbon	Water content ²					
Food, beverages and tobacco (other than sludge)	15	-	15	60					
Textile	24	16	40	20					
Wood and wood products	43	-	43	15					
Pulp and paper (other than sludge)	40	1	41	10					
Petroleum products, Solvents, Plastics	-	80	80	0					
Rubber	(39) ³	17	56	16					
Construction and demolition	4	20	24	0					
Other ⁴	1	3	4	10					

DOC – Other waste

Default values for DOC and fossil carbon for hazardous waste and clinical waste are given in Table 2.6. The values should be applied only for total amounts of hazardous and clinical waste generated in the country.

TABLE 2.6 DEFAULT DOC AND FOSSIL CARBON CONTENTS IN OTHER WASTE (PERCENTAGE IN WET WASTE PRODUCED)								
Waste type DOC Fossil carbon Total carbon Water Content								
Hazardous waste	NA	5 - 50 ¹	NA	10 - 90 ¹				
Clinical waste	15	25	40	35				

Solid waste disposal site


Disposal of municipal, industrial and other solid waste produces significant amounts of methane (CH₄). In addition, SWDS also produce biogenic carbon dioxide (CO₂), non-methane volatile organic compounds (NMVOCs), smaller amounts of nitrous oxide (N₂O), nitrogen oxides (NO) and carbon monoxide (CO).

- Time in place
- Treatment
- Temperature / precipitation
- Oxidation
- Recovery / utilization

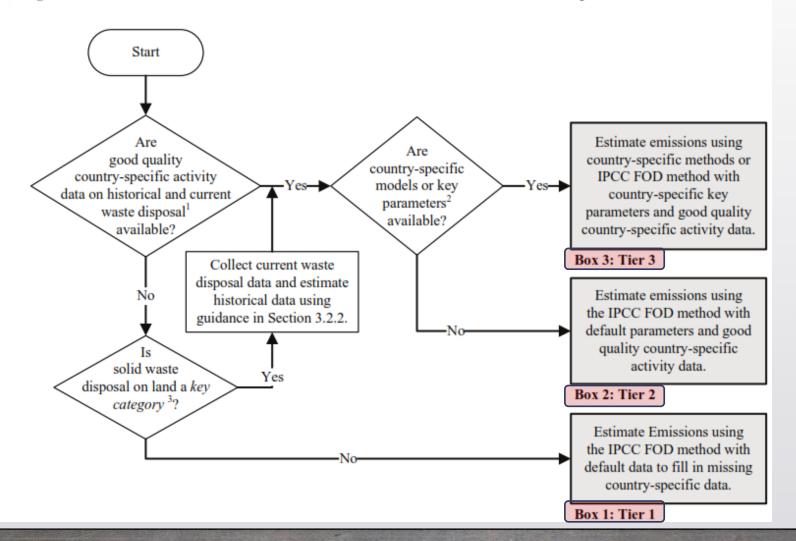
Solid waste disposal site – CH₄ emissions estimating

The IPCC methodology for estimating CH_4 emissions from SWDS is based on the First Order Decay (FOD) method. This method assumes that the degradable organic component (degradable organic carbon, DOC) in waste decays slowly throughout a few decades, during which CH_4 and CO_2 are formed. If conditions are constant.

Solid waste disposal site – CH₄ emissions estimating

Three tiers to estimate the CH_4 emissions from SWDS:

Tier 1: The estimations are based on the IPCC FOD method using mainly default activity data and default parameters.


Tier 2: use the IPCC FOD method and some **default parameters**, but require good quality countryspecific activity **data on current and historical waste disposal at SWDS**.

Tier 3: based on the use of good quality country-specific activity data (Tier 2) and the use of either the FOD method with (1) nationally developed key parameters, or (2) measurement derived country-specific parameters.

Key parameters should include the half-life, and either methane generation potential (Lo) or DOC content in waste and the fraction of DOC which decomposes (DOCf). These parameters can be based on measurements.

Solid waste disposal site – CH₄ emissions estimating

Figure 3.1 Decision Tree for CH₄ emissions from Solid Waste Disposal Sites

First Order Decay (FOD)

EQUATION 3.1 CH₄ emission from SWDS

$$CH_4 \ Emissions = \left[\sum_{x} CH_4 \ generated_{x,T}\right] - R_T \right] \bullet (1 - OX_T)$$

Where:

Т

X

 CH_4 Emissions = CH_4 emitted in year *T*, Gg

= inventory year

- = waste category or type/material
- R_T = recovered CH₄ in year *T*, Gg

 OX_T = oxidation factor in year *T*, (fraction)

CH₄ generated is estimated on the basis of the amount of **Decomposable Degradable Organic Carbon (DDOCm)** which is the part of the organic carbon that will degrade under the anaerobic conditions in SWDS.

Equations for estimating the CH_4

EQUATION 3.2 DECOMPOSABLE DOC FROM WASTE DISPOSAL DATA $DDOCm = W \bullet DOC \bullet DOC_f \bullet MCF$

Where:

- DDOCm = mass of decomposable DOC deposited, Gg
- W = mass of waste deposited, Gg
- DOC = degradable organic carbon in the year of deposition, fraction, Gg C/Gg waste
- DOC_{f} = fraction of DOC that can decompose (fraction)
- MCF = CH_4 correction factor for aerobic decomposition in the year of deposition (fraction)

EQUATION 3.3 TRANSFORMATION FROM DDOCM TO L_0

 $L_o = DDOCm \bullet F \bullet 16/12$

Where:

- $L_o = CH_4$ generation potential, Gg CH₄
- DDOCm = mass of decomposable DOC, Gg

Where:

- = fraction of CH₄ in generated landfill gas (volume fraction)
- 16/12 = molecular weight ratio CH₄/C (ratio)

EQUATION 3.4 DDOCM ACCUMULATED IN THE SWDS AT THE END OF YEAR T

 $DDOCma_T = DDOCmd_T + (DDOCma_{T-1} \bullet e^{-k})$

EQUATION 3.5 DDOCm decomposed at the end of year T

 $DDOCm \ decomp_T = DDOCma_{T-1} \bullet (1 - e^{-k})$

EQUATION 3.6 CH ₄ GENERATED FROM DECAYED DDOCM CH_4 generated _T = DDOCm decomp _T • F • 16/12							
e:							
CH_4 generated _T	 amount of CH₄ generated from decomposable material 						
$DDOCm \ decomp_T$	= DDOCm decomposed in year T , Gg						
F	= fraction of CH ₄ , by volume, in generated landfill gas (fraction)						
16/12 =	molecular weight ratio CH ₄ /C (ratio)						

Equations for estimating the CH_4 – *IPCC* Waste Model

Auto	Save 💽 🗄 🖓 - 🤍 🖁 - 🖺 🛛	⊴ ⇒	IPCC	_Waste_Mode	l (1).xls - Compatibility Mode	✓ 🔎 Search		В	ojan Batinic 🎆 🕀	<i>lä</i> = -	o x
File	Home Insert Draw Page Lay	out Form	nulas Dat	ta Review	View Help XL1	Toolbox NG				Comments	🖻 Share 🕞
Paste ~	Copy → ≪ Format Painter B I U → H →	0 → A^ A <u>&</u> ~ <u>A</u> ~	/ ≣ ≡		臣 Merge & Center ~ @	Conditional Format as Formatting ~ Table ~	insert Delete Format	∑ AutoSum Fill Clear ∑ AutoSum Z Z Sort & Find Fill Fill Sort & Find Fill Sort & Select	✓ Data		
_	Clipboard 😼 Font		F ₃	Align	ment 🗔	Number 🖓 Styles	Cells	Editing	Analysis		^
M1	▼ : × √ fx										*
A	В	С	D	E	F	G		H I J	к	L	M
3 4	Parameters Please enter parameters in the yellow cells. Help on parameter selection can be found in t				► ne IPCC default value.						
7		IPCC defa	ault value	Countr	y-specific parameters	1					
8		In ce den		Value	Reference and remarks	Notes					
7 8 9	Starting year		1950	1950							
10]			Specified Inputs: e	xpanded for spreadshe	et calculation:
	DOC (Degradable organic carbon)	_	omposition 💌								
12	(weight fraction, wet basis)		Default					-	Selected DOC input	s	
13	Food waste	0.08-0.20				May include garden waste provided that a suitable value of DOC is used		_	Food waste		0,1
14	Garden	0.18-0.22				Garden (yard) and park waste and other moderately fast degrading waste			Garden		0,
15	Paper	0.36-0.45							Paper		0,
16 17	Wood and straw	0.39-0.46						-	Wood and straw Textiles		0,4
1/	Textiles Disposable nappies	0.20-0.40				Natural textiles such as wool and cotton. The default DOC value assumes 40% of texti	les are synthetic materials that do not contain DOC				0,2
10	Sewage sludge	0.04-0.05							Disposable nappies Sewage sludge		0,2
18 19 20	Sewage sludge	0.04-0.05	0,05	0,05					Bulk MSW		0,0
21	Industrial waste	0-0.54	0,15	0,15		The composition of industrial waste will vary significantly by country. This DOC value s	should match the amounts entered (see Guidelines)	7	Industrial waste		0,1
22								22			
	DOCf (fraction of DOC dissimilated)		0.5	0.5							
24						1					
25	Methane generation rate constant (k)	Wet tempe	rate 🔻			1					
26	(years ⁻¹)	Range	Default			1			Selected half-life in	outs	
	Food waste	0.1-0.2		0,185		May include garden waste provided that a suitable value of DOC is used			Food waste		0,18
28	Garden	0.06-0.1				Garden (yard) and park waste and other moderately fast degrading waste		1	Garden		0,
29	Paper	0.05-0.07						_	Paper		0,0
29 30 31	Wood and straw	0.02-0.04						_	Wood and straw		0,0
31	Textiles	0.05-0.07				Natural textiles such as wool and cotton. Synthetic textiles are assumed not to contain	DOC		Textiles		0,0
32	Disposable nappies	0.06-0.1				4			Disposable nappies		0,
33	Sewage sludge	0.1-0.2	0,185	0,185		4			Sewage sludge		0,18
34	Industrial waste	0.08-0.1	0,09	0.09					Bulk MSW		0,0
30	industrial Wäste	0.00-0.1	0,09	0,09		The composition of industrial waste will vary significantly by country. This DOC value a	should match the amounts entered (see Guidelines)	<u>1</u>	Industrial waste		0,0
32 33 34 35 36 37	Delay time (months)		6	6		-					
38	Deray time (montins)		0	0		4					
	Fraction of methane (F) in developed gas		0.5	0.5		4					
40	in a starber gas		0,5	0,5		1					
40	Conversion factor. C to CH ₄		1,33	1,33		1					
41			1,33	1,33		4					
	Oxidation factor (OX)		0	0		-					-
-+J 	Instructions Parameters	ACF Activ	rity Amnt	_Deposited	Recovery_OX Results	HWP Stored_C Theory Defaults Food Garden	Paper Wood Textiles Nappies	; : + : •			• •

- Degradable Organic Carbon (DOC) carbon that is accessible to decomposition (Gg C / Gg waste) - Table 2.4
- Fraction of DOC that Decomposes (DOC_f) estimate of fraction of carbon degraded and released from site – recommended default value is 0.5
- CH₄ content in Landfill Gas typically 50% CH₄ / 50% CO₂
- Oxidation Factor (OX) reflects amount of CH₄ from site that oxidized in the soil or other material covering the waste. The default value for oxidation factor is zero. Use of the oxidation value of 0.1 is justified only for covered, well-managed SWDS.

 Methane Correction Factor (MCF) - assigned based on the estimated fraction of waste which decays aerobically and does not produce methane (unmanaged SWDS produce less CH₄ from a given amount of waste than anaerobic managed SWDS)

TABLE 3.1 SWDS CLASSIFICATION AND METHANE CORRECTION FACTORS (MCF)									
Type of Site	Methane Correction Factor (MCF) Default Values								
Managed – anaerobic ¹	1.0								
Managed – semi-aerobic ²	0.5								
Unmanaged ³ – deep (>5 m waste) and /or high water table	0.8								
Unmanaged ⁴ – shallow (<5 m waste)	0.4								
Uncategorised SWDS 5	0.6								

• Half-life $(t_{1/2})$ – time taken for DOC in waste to decay to half its initial mass

(Derived f	RECOM from <i>k</i> values obtain		erimental r	neasureme	t _{1/2}) VALUES			n greenhou	use gas
Type of Waste			Boreal an (MAT	d Temper: `≤20°C)		nte Zone* Tropical ¹ (MAT > 20°C)			
Type of thiste	Type of Waste		pry PET < 1)		Wet (PET > 1)		Dry < 1000 mm)	Moist and Wet (MAP ≥ 1000 mm)	
		Derault	Range	Default	Range	Default	Range	Default	Range
Slowly	Paper/textiles waste	17	$\frac{14^{3,5}-}{23^{3,4}}$	12	$10 - 14^{3,5}$	15	12 – 17	10	8-12
degrading waste	Wood/ straw waste	35	$23^{3,4} - 69^{6,7}$	23	17 – 35	28	17 – 35	20	14 – 23
Moderately degrading waste	Other (non – food) organic putrescible/ Garden and park waste	14	12 - 17	7	6 – 9 ⁸	11	9 – 14	4	3 - 5
Rapidly degrading waste	Food waste/Sewage sludge	12	9 – 14	4 ⁴	$3^{3,4} - 6^9$	8	6 – 10	2	1 ¹⁰ -4
Bulk Waste		14	12 - 17	7	6 – 9 ⁸	11	9-14	4	$3 - 5^{11}$

- Methane Recovery (R) CH₄ generated at SWDS can be recovered and combusted in a flare or energy device. If the recovered gas is used for energy, then the resulting greenhouse gas emissions should be reported under the Energy Sector. Emissions from flaring are however not significant – default value for recovery is zero.
- Delay time Period between deposition of the waste and full production of CH₄. It is good practice to choose a delay time of between zero and six months.
 Values outside this range should be supported by evidence.

Biological treatment of solid waste

Composting and anaerobic digestion of organic waste

- Reduced volume in the waste material stabilization of the waste
- Production of biogas for energy use
- End product can be recycled as a fertilizer or soil amendment

Composting

- large fraction of DOC in waste is converted to CO₂
- CH₄ and N₂O can both be formed during composting

Anaerobic digestion

- Biogas (CH₄ and CO₂)
- N₂O is assumed to be negligible

Biological treatment

- **Composting aerobic** process where large fraction of the DOC in the waste material is converted into carbon dioxide (CO₂). Estimated CH_4 released into atmosphere is < 1%. Composting can also produce emissions of N₂O - range varies up to 5%)
- Anaerobic digestion decomposition of organic material without oxygen by maintaining the temperature, moisture content and pH. The CO_2 emissions are of biogenic origin, thus should be reported only as an information (in the Energy Sector). Emissions of CH_4 due to unintentional leakages during process can generally be between 0 and 10 % of the amount of CH_4 generated (5 % is usually used as a default value)

• Mechanical Biological Treatment (MBT) – waste material undergoes a series of mechanical and biological operations with aim to reduce the volume of the waste and stabilize it prior final disposal. MB-treated waste produce up to 95 % less CH₄ than untreated waste disposed in SWDS.

Biological treatment

The CH₄ and N₂O emissions of biological treatment can be estimated using following equations

EQUATION 4.1 CH ₄ EMISSIONS FROM BIOLOGICAL TREATMENT $CH_4 Emissions = \sum_i (M_i \bullet EF_i) \bullet 10^{-3} - R$ We have	EQUATION 4.2 N ₂ O EMISSIONS FROM BIOLOGICAL TREATMENT N_2O Emissions = $\sum_i (M_i \bullet EF_i) \bullet 10^{-3}$
Where:	Where:
CH_4 Emissions = total CH_4 emissions in inventory year, $Gg CH_4$	N_2O Emissions = total N_2O emissions in inventory year, $Gg N_2O$
M_i = mass of organic waste treated by biological treatment type <i>i</i> , Gg	M_i = mass of organic waste treated by biological treatment type <i>i</i> , Gg
$EF = \text{emission factor for treatment } i, g CH_4/kg \text{ waste treated}$	EF = emission factor for treatment i, g N2O/kg waste treated
i = composting or anaerobic digestion	i = composting or anaerobic digestion
$R = total amount of CH_4$ recovered in inventory year, Gg CH ₄	- composting of anacione digestion

When CH₄ emissions from anaerobic digestion are reported, the amount of recovered gas should be subtracted. The recovered gas can be combusted in a flare or energy device.

If the recovered gas is used for energy, then also the resulting GHG emissions from the combustion should be reported under Energy Sector.

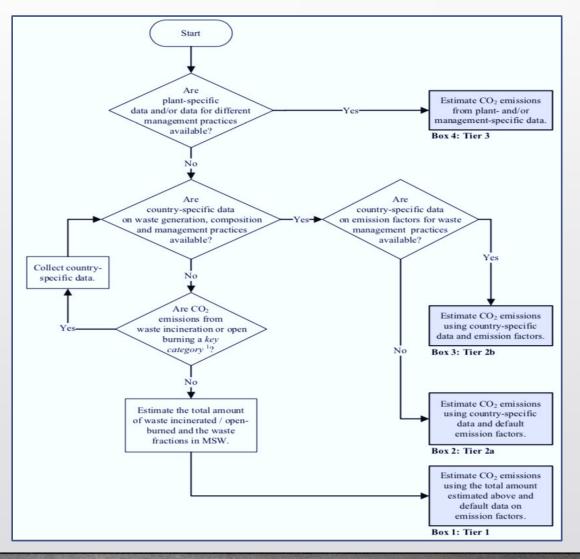
The emissions from flare combustion are not significant, as the CO_2 emissions are of biogenic origin, and the CH_4 and N_2O emissions are very small, so good practice in the Waste Sector does not require their estimation.

Biological treatment

DEFAU	TABLE 4.1 DEFAULT EMISSION FACTORS FOR CH_4 and N_2O emissions from biological treatment of waste											
Type of		ion Factors /aste treated)	-	sion Factors vaste treated)								
biological treatment	on a dry weight basis	on a wet weight basis	on a dry weight basis	on a wet weight basis	Remarks							
Composting	10 (0.08 - 20)	4 (0.03 - 8)	0.6 (0.2 - 1.6)	0.24 (0.06 - 0.6)	Assumptions on the waste treated: 25-50% DOC in dry matter, 2% N in dry matter, moisture content 60%.							
Anaerobic digestion at biogas facilities	2 (0 - 20)	0.8 (0 - 8)	Assumed negligible	Assumed negligible	The emission factors for dry waste are estimated from those for wet waste assuming a moisture content of 60% in wet waste.							

Emission from MBT can be estimated using the default values in Table for the biological treatment. Emissions during mechanical operations can be assumed negligible.

Waste incineration is defined as the combustion of solid and liquid waste in controlled incineration facilities. Emissions from waste <u>incineration without energy recovery</u> are reported in the <u>Waste Sector</u>, while emissions from incineration <u>with energy recovery</u> are reported in the <u>Energy Sector</u>.


Open burning of waste can be defined as the combustion of waste materials in nature (open-air) or in open dumps, where smoke and other emissions are released directly into the air without passing through a chimney or stack.

Incineration and open burning of waste are sources of greenhouse gas emissions, like other types of combustion. **Relevant gases emitted include CO₂**, **methane (CH₄) and nitrous oxide (N₂O)**. Normally, emissions of CO₂ from waste incineration are more significant than CH₄ and N₂O emissions.

The methods for estimating emissions from incineration and open burning of waste vary because of the different factors that influence emission levels.

Estimation of the amount of fossil carbon is the most important factor determining the CO_2 emissions as only CO_2 emissions of fossil origin (e.g., plastics, certain textiles, rubber, liquid solvents, and waste oil) should be included.

 CO_2

Method based on total amount of waste combusted

$$CO_2 Emissions = \sum_i (SW_i \bullet dm_i \bullet CF_i \bullet FCF_i \bullet OF_i) \bullet 44/12$$

CO₂ Emissions: CO₂ emissions in inventory year, Gg/yr

SW_i: total amount of solid waste of type *i* (wet weight) incinerated or open-burned, Gg/yr

dm_i: dry matter content in the waste (wet weight) incinerated or open-burned, (fraction)

CF_i: fraction of carbon in the dry matter (total carbon content), (fraction)

FCF_i: fraction of fossil carbon in the total carbon, (fraction)

OF_i : oxidation factor, (fraction)

44/12 : conversion factor from C to CO₂

i : type of waste incinerated/open-burned such as MSW, industrial solid waste (ISW), sewage sludge, hazardous waste, clinical waste, etc.

CO₂

Method based on MSW composition

$$CO_2Emissions = MSW \bullet \sum_j (WF_j \bullet dm_j \bullet CF_j \bullet FCF_j \bullet OF_j) \bullet 44/12$$

CO2 Emissions: CO2 emissions in inventory year, Gg/yr

- MSW : total amount of municipal solid waste as wet weight incinerated or open-burned, Gg/yr
- WF_j: fraction of waste type/material of component j in the MSW (as wet weight incinerated or open-burned)
- **dm**_i: dry matter content in the component j of the MSW incinerated or open-burned, (fraction)
- **CF**_i: fraction of carbon in the dry matter (i.e., carbon content) of component **j**
- **FCF**_i: fraction of fossil carbon in the total carbon of component **j**
- **OF**_i : oxidation factor, (fraction)
- 44/12 : conversion factor from C to CO₂
- **j**: component of the MSW incinerated/open-burned such as paper/cardboard, textiles, food waste, wood, garden (yard) and park waste, disposable nappies, rubber and leather, plastics, metal, glass, other inert waste

TABLE 5.2 DEFAULT DATA FOR CO ₂ EMISSION FACTORS FOR INCINERATION AND OPEN BURNING OF WASTE											
Parameters	Management practice	MSW	MSW Industrial Waste (%)		Sewage Sludge (%) Note 4	Fossil liquid waste (%) Note 5					
Dry matter content in % of wet weight		see Note 1	NA	NA	NA	NA					
Total carbon content in % of dry weight		see Note 1	50	60	40 - 50	80					
Fossil carbon fraction in % of total carbon content		see Note 2	90	40	0	100					
Oxidation factor in % of	incineration	100	100	100	100	100					
carbon input	Open- burning (see Note 3)	58	NO	NO	NO	NO					

EQUATION 5.4 CH_4 emission estimate based on the total amount of waste combusted

 CH_4 Emissions = $\sum_i (IW_i \bullet EF_i) \bullet 10^{-6}$

Where:

i

 CH_4 Emissions = CH_4 emissions in inventory year, Gg/yr

- IW_i = amount of solid waste of type *i* incinerated or open-burned, Gg/yr
- EF_i = aggregate CH₄ emission factor, kg CH₄/Gg of waste
- 10^{-6} = conversion factor from kilogram to gigagram
 - = category or type of waste incinerated/open-burned, specified as follows:

MSW: municipal solid waste, ISW: industrial solid waste, HW: hazardous waste, CW: clinical waste, SS: sewage sludge, others (that must be specified)

TABLE 5.3 CH ₄ EMISSION FACTORS FOR INCINERATION OF MSW									
Type of incineration/	technology	CH ₄ Emission Factors							
		(kg/Gg waste incinerated on a wet weight bas							
Continuous incineration	stoker	0.2							
Continuous incineration	fluidised bed Notel	~0							
Semi-continuous incineration	stoker	6							
Senn-continuous memeration	fluidised bed	188							
Batch type incineration	stoker	60							
Daten type memeration	fluidised bed	237							

N₂O

EQUATION 5.5 N_2O emission estimate based on the waste input to the incinerators

 $N_2O\ Emissions = \sum_i (IW_i \bullet EF_i) \bullet 10^{-6}$

Where:

i

 N_2O Emissions = N_2O emissions in inventory year, Gg/yr

- IW_i = amount of incinerated/open-burned waste of type *i*, Gg/yr
- EF_i = N₂O emission factor (kg N₂O/Gg of waste) for waste of type *i*
- 10^{-6} = conversion from kilogram to gigagram
 - = category or type of waste incinerated/open-burned, specified as follows:

MSW: municipal solid waste, ISW: industrial solid waste, HW: hazardous waste, CW: clinical waste, SS: sewage sludge, others (that must be specified)

N_2O

TABLE 5.6 DEFAULT N ₂ O EMISSION FACTORS FOR DIFFERENT TYPES OF WASTE AND MANAGEMENT PRACTICES										
Type of waste	Technology / Management practice	Emission factor (g N ₂ O / t waste)	weight basis							
MSW	continuous and semi-continuous incinerators	50	wet weight							
MSW	batch-type incinerators	60	wet weight							
MSW	open burning	150	dry weight							
Industrial waste	all types of incineration	100	wet weight							
Sludge (except sewage sludge)	all types of incineration	450	wet weight							
Sewage sludge	incineration	990	dry weight							
Sewage sludge	memeration	900	wet weight							

Amount of open-burned waste

EQUATION 5.7 TOTAL AMOUNT OF MUNICIPAL SOLID WASTE OPEN-BURNED

 $MSW_B = P \bullet P_{frac} \bullet MSW_P \bullet B_{frac} \bullet 365 \bullet 10^{-6}$

Where:

MSW_B = Total amount of municipal solid waste open-burned, Gg/yr

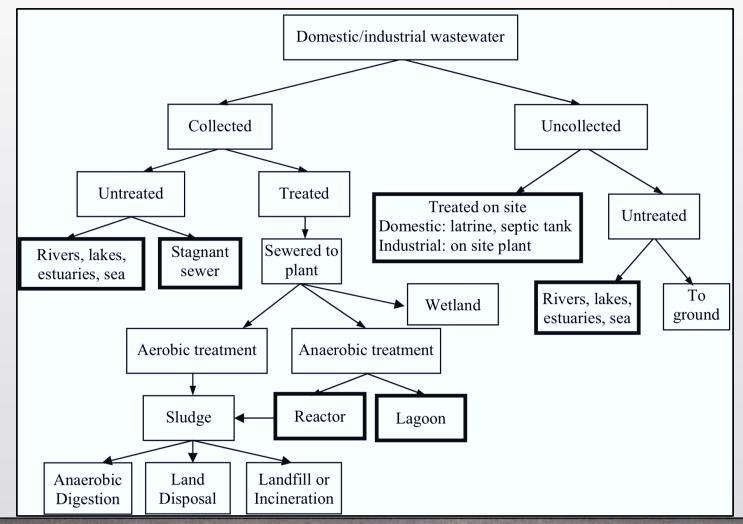
P = population (capita)

 P_{frac} = fraction of population burning waste, (fraction)

MSW_P = per capita waste generation, kg waste/capita/day

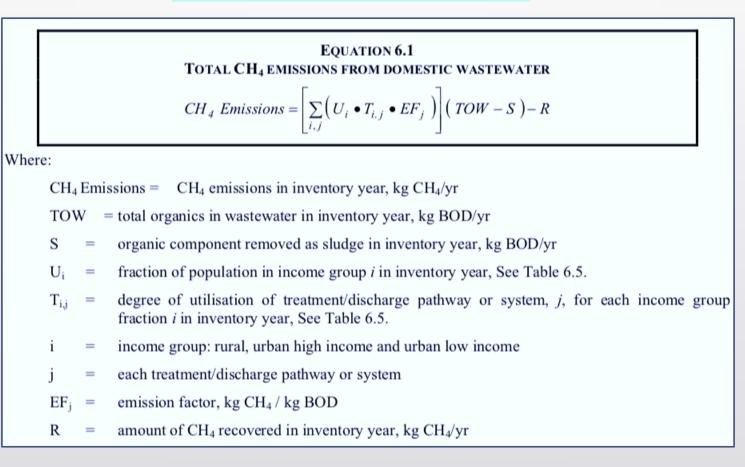
 $B_{\text{frac}} =$ fraction of the waste amount that is burned relative to the total amount of waste treated, (fraction)

- 365 = number of days by year
- 10^{-6} = conversion factor from kilogram to gigagram


Wastewater can be a source of methane (CH₄) when treated or disposed anaerobically. It can also be a source of nitrous oxide (N₂O) emissions. Carbon dioxide (CO₂) emissions from wastewater are not considered in the IPCC Guidelines because these are of biogenic origin.

Wastewater originates from a variety of domestic, commercial and industrial sources and may be treated on site (uncollected), sewered to a centralized plant (collected) or disposed untreated nearby or via an outfall.

Treatment and disposal of wastewater produce GHGs such as CO_2 , CH_4 and N_2O . CO_2 is of biogenic origin and not included. N_2O emissions from sludge and wastewater spread on agricultural land are considered in AFOLU sector



Different pathways for wastewater treatment and discharge

	Ту	pes of t	reatment and disposal	CH ₄ and N ₂ O emission potentials			
	p	Rive	r discharge	Stagnant, oxygen-deficient rivers and lakes may allow for anaerobic decomposition to produce CH ₄ . Rivers, lakes and estuaries are likely sources of N ₂ O.			
	Untreated	Sew	ers (closed and under nd)	Not a source of CH_4/N_2O .			
		Sew	ers (open)	Stagnant, overloaded open collection sewers or ditches/canals are likely significant sources of CH ₄ .			
			Centralized aerobic	May produce limited CH ₄ from anaerobic pockets.			
ted			wastewater treatment plants	Poorly designed or managed aerobic treatment systems produce CH ₄ .			
Collected		reatment		Advanced plants with nutrient removal (nitrification and denitrification) are small but distinct sources of N ₂ O.			
	Treated	Aerobic t	Aerobic 1	Aerobic t	Aerobic treatment	Sludge anaerobic treatment in centralized aerobic wastewater treatment plant	Sludge may be a significant source of CH ₄ if emitted CH ₄ is not recovered and flared.
			Aerobic shallow ponds	Unlikely source of CH ₄ /N ₂ O. Poorly designed or managed aerobic systems produce CH ₄ .			
		c t	Anaerobic lagoons	Likely source of CH ₄ .			
		Anaerobic treatment		Not a source of N ₂ O.			
		Anac	Anaerobic reactors	May be a significant source of CH_4 if emitted CH_4 is not recovered and flared.			
ed		Sept	ic tanks	Frequent solids removal reduces CH ₄ production.			
Uncollected		Oper	n pits/Latrines	Pits/latrines are likely to produce CH ₄ when temperature and retention time are favourable.			
Ū		Rive	r discharge	See above.			

Domestic wastewater – CH₄

Domestic wastewater – CH₄

EQUATION 6.2 CH₄ EMISSION FACTOR FOR EACH DOMESTIC WASTEWATER TREATMENT/DISCHARGE PATHWAY OR SYSTEM

 $EF_j = B_o \bullet MCF_j$

Where:

- EF_j = emission factor, kg CH₄/kg BOD
- j = each treatment/discharge pathway or system
- $B_o = maximum CH_4$ producing capacity, kg CH_4 /kg BOD
- MCF_j = methane correction factor (fraction), See Table 6.3.

Domestic wastewater – CH₄

$TABLE \ 6.2 \\ DEFAULT MAXIMUM \ CH_4 \ PRODUCING \ CAPACITY \ (B_0) \ FOR \ DOMESTIC \ WASTEWATER$

0.6 kg CH₄/kg BOD

0.25 kg CH4/kg COD

Based on expert judgment by lead authors and on Doorn et al., (1997)

TABLE 6.3 Default MCF values for domestic wastewater										
Type of treatment and discharge pathway or system	Comments	MCF ¹	Range							
Untreated system										
Sea, river and lake discharge	Rivers with high organics loadings can turn anaerobic.	0.1	0 - 0.2							
Stagnant sewer	Open and warm	0.5	0.4 - 0.8							
Flowing sewer (open or closed)	Fast moving, clean. (Insignificant amounts of CH ₄ from pump stations, etc)	0	0							
Treated system										
Centralized, aerobic treatment plant	Must be well managed. Some CH ₄ can be emitted from settling basins and other pockets.	0	0 - 0.1							
Centralized, aerobic treatment plant	Not well managed. Overloaded.	0.3	0.2 - 0.4							
Anaerobic digester for sludge	CH ₄ recovery is not considered here.	0.8	0.8 - 1.0							
Anaerobic reactor	CH ₄ recovery is not considered here.	0.8	0.8 - 1.0							
Anaerobic shallow lagoon	Depth less than 2 metres, use expert judgment.	0.2	0 - 0.3							
Anaerobic deep lagoon	Depth more than 2 metres	0.8	0.8 - 1.0							
Septic system	Half of BOD settles in anaerobic tank.	0.5	0.5							
Latrine	Dry climate, ground water table lower than latrine, small family (3-5 persons)	0.1	0.05 - 0.15							
Latrine	Dry climate, ground water table lower than latrine, communal (many users)	0.5	0.4 - 0.6							
Latrine	Wet climate/flush water use, ground water table higher than latrine	0.7	0.7 - 1.0							
Latrine	Regular sediment removal for fertilizer	0.1	0.1							
Based on expert judgment by lead	authors of this section.									

Industrial wastewater – CH₄

The general equation to estimate CH₄ emissions from industrial wastewater is as follows:

EQUATION 6.4 TOTAL CH₄ EMISSIONS FROM INDUSTRIAL WASTEWATER $CH_4 \ Emissions = \sum_{i} \left[\left(\ TOW_i - S_i \right) EF_i - R_i \right]$

Where:

Crig childsions Crig childsions in inventory year, kg crig/y	$CH_4 Emissions =$	CH ₄ emissions in inventory year, kg CH ₄ /yr
--	--------------------	---

- TOW_i = total organically degradable material in wastewater from industry *i* in inventory year, kg COD/yr
 - = industrial sector
- S_i = organic component removed as sludge in inventory year, kg COD/yr
- EF_i = emission factor for industry *i*, kg CH₄/kg COD for treatment/discharge pathway or system(s) used in inventory year

If more than one treatment practice is used in an industry this factor would need to be a weighted average.

 R_i = amount of CH₄ recovered in inventory year, kg CH₄/yr

Industrial wastewater – CH₄

		Equation 6.5 CH_4 emission factor for industrial wastewater $EF_j = B_o \bullet MCF_j$	
ere:			
EF_j	=	emission factor for each treatment/discharge pathway or system, kg CH_4 /kg COD, (See Table 6.8.)	
j	=	each treatment/discharge pathway or system	
Bo	=	maximum CH4 producing capacity, kg CH4/kg COD	
MCF _i	=	methane correction factor (fraction) (See Table 6.8.)	

If no country-specific data are available, it is good practice to use the IPCC COD-default factor for Bo (0.25 kg CH_4/kg COD).

TABLE 6.8 Default MCF values for industrial wastewater										
Type of treatment and discharge pathway or systemCommentsMCF ¹ Range										
Untreated										
Sea, river and lake dischargeRivers with high organics loadings may turn anaerobic, however this is not considered here. 0.1 $0 - 0.1$										
Treated										
Aerobic treatment plant	Must be well managed. Some CH ₄ can be emitted from settling basins and other pockets.	0	0 - 0.1							
Aerobic treatment plant	Not well managed. Overloaded	0.3	0.2 - 0.4							
Anaerobic digester for sludge	CH ₄ recovery not considered here	0.8	0.8 - 1.0							
Anaerobic reactor (e.g., UASB, Fixed Film Reactor)	CH4 recovery not considered here	0.8	0.8 - 1.0							
Anaerobic shallow lagoon	Depth less than 2 metres, use expert judgment	0.2	0 - 0.3							
Anaerobic deep lagoon	Depth more than 2 metres	0.8	0.8 - 1.0							

EQUATION 6.7 N_2O EMISSIONS FROM WASTEWATER EFFLUENT

 $N_2O\ Emissions = N_{EFFLUENT} \bullet EF_{EFFLUENT} \bullet 44/28$

Where:

- N2O emissions = N2O emissions in inventory year, kg N2O/yr
- N EFFLUENT = nitrogen in the effluent discharged to aquatic environments, kg N/yr
- $EF_{EFFLUENT}$ = emission factor for N₂O emissions from discharged to wastewater, kg N₂O-N/kg N

The factor 44/28 is the conversion of kg N₂O-N into kg N₂O.

EQUATION 6.8 TOTAL NITROGEN IN THE EFFLUENT

 $N_{EFFLUENT} = (P \bullet Protein \bullet F_{NPR} \bullet F_{NON-CON} \bullet F_{IND-COM}) - N_{SLUDGE}$

Where:

Р

- N_{EFFLUENT} = total annual amount of nitrogen in the wastewater effluent, kg N/yr
 - human population
- Protein = annual per capita protein consumption, kg/person/yr
- F_{NPR} = fraction of nitrogen in protein, default = 0.16, kg N/kg protein
- F_{NON-CON} = factor for non-consumed protein added to the wastewater
- F_{IND-COM} = factor for industrial and commercial co-discharged protein into the sewer system
- N_{SLUDGE} = nitrogen removed with sludge (default = zero), kg N/yr

TABLE 6.11

N2O METHODOLOGY DEFAULT DATA

	Definition	Default Value	Range
Emission Fac	tor		
EFEFFLUENT	Emission factor, (kg N2O-N/kg-N)	0.005	0.0005 - 0.25
EFPLANTS	Emission factor, (g N2O/person/year)	3.2	2-8
Activity Data	l .		
Р	Number of people in country	Country-specific	± 10 %
Protein	Annual per capita protein consumption	Country-specific	± 10 %
F _{NPR}	Fraction of nitrogen in protein (kg N/kg protein)	0.16	0.15 - 0.17
T _{plant}	Degree of utilization of large WWT plants	Country-specific	± 20 %
F _{NON-CON}	Factor to adjust for non-consumed protein	1.1 for countries with no garbage disposals,1.4 for countries with garbage disposals	1.0 - 1.5
F _{IND-COM}	Factor to allow for co-discharge of industrial nitrogen into sewers. For countries with significant fish processing plants, this factor may be higher. Expert judgment is recommended.	1.25	1.0 - 1.5

IPCC Refinement highlights

WASTE GENERATION, COMPOSITION AND MANAGEMENT DATA

Updated regional default values of waste generation rate and their treatment and updated waste composition default values of carbon content, nitrogen content and DOC of sludge from specific industry and domestic sludge

SOLID WASTE DISPOSAL

Section 3.2.1.1 provides information on aerobic management of SWDS including information on calculation of MCF for new categories of aerobic management. Section 3.2.3 provides additional information on DOCf including updated default values and their uncertainties by different type waste (less, moderately and highly decomposable). Information on MCF including default MCF values and definition for new categories of aerobic management

INCINERATION AND OPEN BURNING OF WASTE

Section 5.1 provides definition of and information on pyrolysis, gasification and plasma technology. Section 5.4.1.3 presents an updated oxidation factor of MSW open burning

WASTEWATER TREATMENT AND DISCHARGE

Sections that discuss CH_4 emissions from domestic and industrial wastewater, as well as N_2O emissions from domestic wastewater have been updated to reflect the refinements presented throughout the chapter.

The 5th GREENHOUSE GAS INVENTORY SYSTEM TRAINING WORKSHOP

II PART

Case Study and GHG Estimation Practice in the Waste Sector

IPCC 2006 Waste Model

- Directed to countries with limited data on waste disposal
- Estimates GHG emissions over a time-series, using the firstorder decay model
- ✓ Facilitates comparison of estimates between countries
- Permits assessment of impacts of different waste management and emission mitigation practices

IPPC Waste Model: Parameters - waste input

Parameters Country Thailand Asia- Southeast Region Ŧ Please enter parameters in the yellow cells. If no national data are available, copy the IPCC default value. Help on parameter selection can be found in the 2006 IPCC guidelines PCC default value **Country-specific parameters** Value **Reference and remarks** 1950 Starting year 1950 Asia- Southeast Ŧ Waste by comp Asia: Eastern DOC (Degradable organic carbon) (weight fraction, wet basis) Waste by composi Asia: South-central Food waste Bulk waste data o 0.15 Asia- Southeast Garden 0.2 0.18-0.22 U.Z Asia- Western & Middle East 0.36-0.45 Paper 0.4 0.4 Wood and straw 0.39-0.46 0.43 0.43 0.24 Textiles 0.20-0.40 0.24 0.18-0.32 0.24 0.24 Disposable nappies Sewage sludge 0.04-0.05 0.05 0.05 Industrial waste 0-0.54 0.15 0.15 DOCf (fraction of DOC dissimilated) 0.5 0.5

IPPC Waste Model: Parameters – climate selection

Methane generation rate constant (k)	Wet tem	perate 🚽		
(years ⁻¹)	Dry tem	perate		
Food waste	Wet tem		0.185	
Garden	Dry trop		0.1	
Paper			0.06	
Wood and straw	Moist an	d wet tro	0.03	
Textiles	0.05-0.07	0.06	0.06	
Disposable nappies	0.06-0.1	0.1	0.1	
Sewage sludge	0.1–0.2	0.185	0.185	
Industrial waste	0.08-0.1	0.09	0.09	

IPPC Waste Model: Parameters – MSW activity data

MSW activity data

Enter population, waste per capita and MSW waste composition into the yellow cells. Help and default regional values are given in the 2006 IPCC Guidelines.

Industrial waste activity data must be entered separately starting in Column Q.

IPCC Regional defaults

 \smallsetminus

	-	270		59%	44%	0%	13%	10%	3%	0%	31%	100%
			-		Con	nposition	of waste g	oing to so	lid waste	disposal s	sites	
Year	Population	Waste per capita	Total MSW	% to SWDS	Food	Garden	Paper	Wood	Textile	Nappies	Plastics, other inert	Total
/	millions	kg/cap/yr	Gg	%	%	%	%	%	%	%	%	(=100%)
1950	10	270	2700	59%	44%	0%	13%	10%	3%	0%	31%	100%
1951	10	270	2700	59%	44%	0%	13%	10%	3%	0%	31%	100%
1952	10	270	2700	59%	44%	0%	13%	10%	3%	0%	31%	100%
1953	10	270	2700	59%	44%	0%	13%	10%	3%	0%	31%	100%
1954	10	270	2700	59%	44%	0%	13%	10%	3%	0%	31%	100%
1955	10	270	2700	59%	44%	0%	13%	10%	3%	0%	31%	100%
1956	10	270	2700	59%	44%	0%	13%	10%	3%	0%	31%	100%
1957	10	270	2700	59%	44%	0%	13%	10%	3%	0%	31%	100%
1958	10	270	2700	59%	44%	0%	13%	10%	3%	0%	31%	100%
1959	10	270	2700	59%	44%	0%	13%	10%	3%	0%	31%	100%
1960	10	270	2700	59%	44%	0%	13%	10%	3%	0%	31%	100%
1961	10	270	2700	59%	44%	0%	13%	10%	3%	0%	31%	100%
1962	10	270	2700	59%	44%	0%	13%	10%	3%	0%	31%	100%
1963	10	270	2700	59%	44%	0%	13%	10%	3%	0%	31%	100%
1964	10	270	2700	<mark>59%</mark>	44%	0%	13%	10%	3%	0%	31%	100%
1965	10	270	2700	59%	44%	0%	13%	10%	3%	0%	31%	100%
1966	10	270	2700	59%	44%	0%	13%	10%	3%	0%	31%	100%
1967	10	270	2700	59%	44%	0%	<u>13%</u>	10%	3%	0%	31%	100%
1968	10	270	2700	59%	44%	0%	13%	10%	3%	0%	31%	100%
1969	10	270	2700	59%	44%	0%	13%	10%	3%	0%	31%	100%
1970	10	270	2700	<u>59%</u>	44%	0%	13%	10%	3%	0%	31%	100%
1971	10	270	2700	59%	44%	0%	13%	10%	3%	0%	31%	100%
1972	10	270	2700	59%	44%	0%	13%	10%	3%	0%	31%	100%
1973	10	270	2700	59%	44%	0%	13%	10%	3%	0%	31%	100%
1974	10	270	2700	59%	44%	0%	13%	10%	3%	0%	31%	100%
1975	/ 10	270	2700	59%	44%	0%	13%	10%	3%	0%	31%	100%
1976	10	270	2700	59%	44%	0%	13%	10%	3%	0%	31%	100%

IPPC Waste Model: Parameters - Results

Results

Country

Thailand

Enter starting year, industrial waste disposal data and methane recovery into the yellow cells. MSW activity data is entered on MSW sheet

					Methane g	enerated							
Year	Food	Garden	Paper	Wood	Textile	Nappies	Sludge	MSW	Industrial	Total	Methane recovery		Methane emission
	А	в	с	D	E	F	G	н	J	к	L		M = (K-L)*(1- OX)
	Gg	Gg	Gg	Gg	Gg	Gg	Gg	Gg	Gg	Gg	Gg		Gg
1950	0	0	0	0	0	0	0		0	0	0		0
1951	4	0	1	0	0	0	0		2	7	0		7
1952	8	0	2	1	0	0	0		3	14	0		14
1953	10	0	3	1	0	0	0		4	20	0		20
1954	13	0	4	2	1	0	0		5	25	0		25
1955	15	0	5	2	1	0	0		6	29	0		29
1956	16	0	6	3	1	0	0		7	33	0		33
1957	18	0	7	3	1	0	0		8	37	0		37
1958 1959	19 20	0	8	3	1	0	0		9 10	40 43	0		40
1959	20	0	9	4	1	0	0		10	43	0		43 45
1960	21	0	9	4	1	0	0		11	43	0		47
1962	22	0	10	5	1	0	0		12	50	0		50
1963	22	0	10	5	1	0	0		12	51	0		51
1964	23	0	11	5	1	0	0		13	53	0		53
1965	23	0	11	6	1	0	0		13	55	0		55
1966	23	0	12	6	1	0	0		14	56	0		56
1967	23	0	12	6	2	0	0		14	58	0		58
1968	24	0	13	7	2	0	0		14	59	0		59
1969	24	0	13	7	2	0	0		15	60	0		60
1970	24	0	13	7	2	0	0		15	61	0		61
1971	24	0	14	7	2	0	0		15	62	0		62
1972	24	0	14	8	2	0	0		15	63	0		63
1973	24	0	14	8	2	0	0		16	64	0		64
1974	24	0	15	8	2	0	0		16	65	0		65
1975	24	0	15	8	2	0	0		16	65	0		_\ 6 ∕5

Summary: Default values

- ✓Climate
- ✓MSW composition
- ✓MSW generation
- ✓MSW management

Sample model - Indonesia

Methane Correction Factor (MCF)

This worksheet calculates a weighted average MCF from the estimated distril Enter either IPCC default values or national values into the yellow MCF cells Then enter the approximate distribution of waste disposals (by mass) betwee Totals on each row must add up to 100% (see "distribution check" values)

Parameters –	Country											MSW									
	Region	Asia- So	utheas	t)			T		_				_		Un	-	Un-		Managed,		Distri-
Please enter parameters in the yellow cells. If n					ault value							. – –			manag	ged,	managed,		semi-	Uncate-	bution
Help on parameter selection can be found in the			s, cupy ii				Г			INI	Ρl	115			shall	ow	deep	Managed	aerobic	gorised	Check
	2000 11 00 9									N II					MC	F	MCF	MCF	MCF	MCF	
	IPCC defa	ult value	C	country-spec	ific para	ameters			- L	/ /		×	IPCC (default	0.4	ļ	0.8	1	0.5	0.6	
			Valu			nd remark	(S						Country	-specific							
Starting year		1950	1	1950										ue	0.4		0.8	1	0.5	0.6	
														$\overline{}$							
DOC (Degradable organic carbon)	Waste b	y comp)													D	istribution o	f Waste by V	Vaste Manage	ment Type	
(weight fraction, wet basis)	Range	Default												Country-							
Food waste	0.08-0.20	0.15		0.15			<u> </u>	/					specifo	c value	25%	6	30%	25%	5%	15%	Total
Garden	0.18-0.22	0.2		0.2			(Ye	ar	%		%	%	%	%	(100%)
Paper Wood and straw	0.36-0.45	0.4	-	MSW activity	v data 🎝			/			Г					25%	30%	25%	5%	15%	100%
Textiles	0.39-0.40	0.43	-	-								2				25%	30%	25%	5%	15%	100%
Disposable nappies	0.18-0.32	0.24	- 1	Enter populatio	n, waste p	per capita an	Id MSW w	aste compo	osition into	the yellow	cells.					25%	30%	25%	5%	15%	100%
Sewage sludge	0.04-0.05	0.05														25%	30%	25%	5%		100%
			- '	PCC Regional			entered 5	opulatoly c		olumin og.	L					25%	30%	25%	5%	15%	100%
Industrial waste	0-0.54	0.15			270		59%	44%		13%	10%			31%	100%	25%	30%	25%	5%	15%	100%
								Con	nposition o	of waste g	oing to so	lid waste	disposal s	•		25% 25%	<u>25%</u> 25%	30% 30%	5% 5%	<u>15%</u> 15%	100% 100%
DOCf (fraction of DOC dissimilated)		0.5			Waste	í i	% to							Plastics, other		25%	25%	30%	5% 5%	15%	100%
			- Year	Population	per capita	Total MSW	SWDS	Food	Garden	Paper	Wood	Textile	Nappies	inert	Total	25%	25%	30%	5%	15%	100%
Methane generation rate constant (k)	Moist ar	nd wet t 🚽														25%	25%	30%	5%	15%	100%
(years ⁻¹)	Range	Default			kg/cap/yr	Gg	%	%	%	%	%	%	%	%	(=100%)	25%	25%	30%	5%	15%	100%
Food waste	0.17-0.7	0.4	2013 2014	237	270 270	63990 63990	<u>59%</u> 59%	<u>44%</u> 44%	<u>0%</u> 0%	13% 13%	<u>10%</u> 10%	<u>3%</u> 3%	0%	31% 31%	<u>100%</u> 100%	25%	25%	30%	5%	15%	100%
Garden	0.15-0.2	0.17	2014	257	270	68850	59%	44%	0%	13%	10%	3%	0%	31%	100%	25%	25%	30%	5%	15%	100%
Paper	0.06-0.085	0.07	2016	255	270	68850	59%	44%	0%	13%	10%	3%	0%	<mark>31%</mark>	100%	25%	25%	30%	5%	15%	100%
Wood and straw Textiles	0.03-0.05	0.035	2017	255	270	68850	59%	44%	0%	13%	10%	3%	0%	31%	100%	25%	25%	30%	5%	15%	100%
Disposable nappies	0.06-0.085	0.07	2018 2019	255 260	270 270	68850 70200	59% 59%	44% 44%	0% 0%	13% 13%	<u>10%</u> 10%	3% 3%	0% 0%	31% 31%	100%	25%	25%	30%	5%	15%	100%
Sewage sludge	0.15-0.2	0.17	2013	260	270	70200	59%	44%	0%	13%	10%	3%	0%	31%	100%						
Sewage sludge	0.17-0.7	0.4	2021	260	270	70200	59%	44%	0%	13%	10%	3%	0%	31%	100%						
			2022	260	270	70200	59%	44%	0%	13%	10%	3%	0%	<mark>31%</mark>	100%						
			2023	268	270	72360	59%	44%	0%	13%	10%	3%	0%	31%	100%						
			2024	268 268	270 270	72360 72360	<u>59%</u> 59%	44% 44%	0% 0%	13% 13%	<u>10%</u> 10%	<u>3%</u> 3%	0%	31% 31%	100% 100%						
			2025	268	270	72360	59%	44%	0%	13%	10%	3%	0%	31%	100%						
			2027	270	270	72900	59%	44%	0%	13%	10%	3%	0%	31%	100%						
			2028	270	270	72900	59%	44%	0%	13%	10%	3%	0%	<mark>31%</mark>	100%						
			2029	270	270	72900	59%	44%	0%	13%	10%	3%	0%	31%	100%						
			2030	270	270	72900	<mark>59%</mark>	<mark>44%</mark>	0%	13%	10%	3%	0%	<mark>31%</mark>	100%						

Sample model - Indonesia

Results

Country

Indonesia

Enter starting year, industrial waste disposal data and methane recovery into the yellow cells. MSW activity data is entered on MSW sheet

							Methanes	zenerated						
		Year	Food	Garden	Paper	Wood	Textile	Nappies	Sludge	MSW	Industrial	Total	Methane recovery	Methane emission
			А	в	с	D	Е	F	G	н	1	к	L	M = (K-D*0-0
			Gg	Gg	Gg	Gg	Gg	Gg	Gg	Gg	Gg	Gg	Gg	Gg
		1050	0	0		0	0	0			0	0	0	
		1950	0 68	0		0	0	0	0		0	0 88	0	
		1952	114	0		9	3	0	0		5	153	0	1
		1953	145	0		14	4	0	0		7	201	0	2
		1954	167	0		18	5	0	0		9 10	239 270	0	2
		1955	192	0		22	7	0	0		10	270	0	2
		1957	201	0	65	30	8	0	0		12	316	0	3
		1958	206	0	72	34	9	0	0		13	334	0	3
		1958	206	0	72	34	9	0	0		13	334	0	
572	0	1958	4	258	49	34	9	0	0	18	13		0	1,27
572 575	0		8				9		0	18 18	,	5		1,27
		381	8	258	49		9	0	0		1,28	5	10	1,27 1,28
575	0	388	8 3 7	258 262	49 49		9	0	0	18	1,28	5 6 7	10 10	1,27 1,28 1,29 1,32
575 576	0	388 393 397	8 3 7 3	258 262 266	49 49 50	0	9	0	0	18 18	1,28: 1,290 1,307	5 6 7 4	10 10 10	1,27 1,28 1,29
575 576 591	0 0 0	388 393 397 403	8 3 7 3 0	258 262 266 271	49 49 50 51	000000000000000000000000000000000000000	9	0		18 18 18	1,283 1,290 1,307 1,334	5 6 7 4 6	10 10 10	1,27 1,28 1,29 1,32 1,34
575 576 591 602	0 0 0 0	388 393 397 403 410	8 3 7 3 0 5	258 262 266 271 276	49 49 50 51 51	0 0 0	9	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		18 18 18 18	1,28 1,29 1,30 1,33 1,35	5 6 7 4 6 8	10 10 10 10	1,27 1,28 1,29 1,32 1,34 1,36
575 576 591 602 612	0 0 0 0	388 393 397 403 410 410	8 3 7 3 0 5 1	258 262 266 271 276 280	49 49 50 51 51 52	000000000000000000000000000000000000000	9	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		18 18 18 18	1,28: 1,29(1,30' 1,334 1,35(1,37)	5 6 7 4 6 8 5	10 10 10 10 10 10	1,27 1,28 1,29 1,32 1,34 1,36 1,38
575 576 591 602 612 618	0 0 0 0	388 399 397 403 410 410 410 410	8 3 7 3 0 5 1 7	258 262 266 271 276 280 285	49 49 50 51 51 52 53	0 0 0 0 0	9	0 0 0 0 0 0 0		18 18 18 18 18 18	1,28: 1,29(1,30) 1,33- 1,35(1,37) 1,39:	5 6 7 4 6 8 5 5	10 10 10 10 10 10 10	1,27 1,28 1,29 1,32
575 576 591 602 612 618 627	0 0 0 0 0	388 393 397 403 410 410 410 421 422	8 3 7 3 3 0 5 1 7 3	258 262 266 271 276 280 285 289	49 49 50 51 51 52 53 54	0 0 0 0 0 0	9	0 0 0 0 0 0 0 0 0		18 18 18 18 18 18 18 18	1,28: 1,29(1,30' 1,33- 1,35(1,37(1,39) 1,41:	5 6 7 4 6 8 5 5 1	10 10 10 10 10 10 10 10	1,27 1,28 1,29 1,32 1,34 1,36 1,38 1,40

IPPC Waste Model - CASE STUDY EXERCISES....

THANK YOU

Faculty of Technical Sciences-Novi Sad, Serbia Department of Environmental Engineering

> Tel. +381 21 485-2413 e-mail: bojanbatinic@uns.ac.rs

